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AIJstraet-This paper presents a continuum three-dimensional Ritz formulation for the vibration
analysis of homogeneous, thick, rectangular plates with arbitrary combinations of boundary con­
straints. This model is formulated on the basis of the linear, three-dimensional, small deformation
elasticity theory to predict the vibratory responses of these thick rectangular plates. The dis­
placement fields in the transverse and in-plane directions are expressed by sets of orthogonally
generated polynomial functions. These shape functions are intrinsically a product of a class of
orthogonal polynomial functions and a basic function which are chosen to satisfy the essential
geometric boundary conditions at the outset. Sets of frequency data for plates with various aspect
ratios and thickness ratios have been presented. These data are used to examine the merits and
limitations of the classical plate theory and Mindlin plate theory by direct comparisons. Finally,
using the three-dimensional continuum approach, sets of first known deformed mode shapes have
been generated thus helping to understand the vibratory motion. Furthermore, these results may
also serve as the benchmark to further research into the refined plate theories.

I. INTRODUCTION

To date, closed-form analytical solutions to the eigenvalue problems associated with the
elastic continuum are limited to only simple cases. To seek practical solutions, many
researchers have resorted to numerical approximations. As known, for elastic continuums
of various geometries and boundary conditions, the Ritz energy method can provide
accurate solutions, however, it depends largely on the choice of global admissible functions.

Well known existing functions have been expressed in terms of finite series such as
trigonometric functions (Young, 1950; Warburton, 1954), power series expansion (Narita,
1985) and hill functions (Kao, 1973). They have been used with great success in the
past, mainly for thin plates. Lately, sets of self-generating polynomial functions have been
proposed and implemented in the Ritz procedure for various thin plate problems (Bhat,
1985; Liew et al., 1990). Liew and his co-workers (1993) have recently extended the
polynomial-based Ritz formulation to Mindlin's plates. The advantage of these
polynomials, as pointed out (Liew et al., 1990), is mainly due to the ease of generation and
numerical implementation that greatly enhance the computational efficiency of the Ritz
method. With this merit, it is envisaged that the formidable efforts involved in three­
dimensional computations can be drastically reduced.

The complexity of three-dimensional analysis has led to the development of refined
plate theories (Levinson, 1980; Reddy, 1984). These theories aim to reduce the dimensions
of problems (and thus the determinant size of the eigenvalue equation) from three to two
by addressing the quantities of interest, such as membrane forces, bending moments and
shear forces, in terms ofcertain averages over the displacement across the smaller dimension,
i.e. thickness dimension. These simplifications are inherently erroneous and result in
erroneous responses of structures. The discrepancies become significant when the thickness
dimension increases to that comparable to the other leading plate dimensions.

Very often, plates used in industrial situations are moderately thick or very thick. They
can be found in many engineering applications such as civil, structural, military and marine
structures. Due to the practical importance, solution methods that can provide reliable
and accurate results will be of tremendous help to our understanding of their dynamic
characteristics. Moreover, in order to assess the accuracy of simple plate theories, accurate
three-dimensional solutions to these problems will be of advantage if available for direct
comparison. Such closed-form exact solutions have been derived notably by Srinivas et al.
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(1970) and Wittrick (1987) for simply supported thick rectangular plates. For other
boundary conditions, solutions based on three-dimensional elasticity theory are available
only for cantilevered parallelepipeds due to the excellent work of Leissa and Zhang (1983).

Three-dimensional analysis of thick plates subject to other support conditions is not
found in current literature. This study attempts to fill this apparent void by providing sets
of first known frequency data and three-dimensional deformed mode shapes for thick
plates subject to different boundary constraints. The natural vibratory motions have been
manifested into three-dimensional deformed mesh plots to depict vividly the contribution
ofeach displacement component to the deformed geometry. This study covers five practical
sets of boundary conditions, various aspect ratios and side-to-thickness ratios. The reported
deflection contour plots and three-dimensional deformed mode shapes serve to enhance
our understanding and visualization of the vibratory characteristics of these plates. The
present solutions supplement the existing database, and further serve as the benchmark
for researchers to examine the merits of new development in refined plate theories.

2. THEORETICAL FORMULATION

2.1. Three-dimensional elasticity theory
Consider a homogeneous, thick, rectangular plate, as shown in Fig. I, bounded by

the edges -a/2:::; x:::; a/2, -b/2:::; y:::; b/2 and -t/2:::; z:::; t/2. Stress free surfaces are
assumed at z = - t/2 and t/2. The origin of the coordinate system is taken to be at the
geometric center of the plate. To determine the vibration frequencies and mode shapes of
the plate, the Ritz energy procedure is followed. The deflections are decomposed into three
orthogonal displacement components, u, v and w parallel to the X-, y- and z-directions,
respectively.

For small amplitude vibratory motion, the strain energy of elastic plates in terms of
the displacement fields, {u, v, w} T can be expressed as:

OJ = ~i[eyD[e]dV,
2 v

where [e] is the strain tensor:

ex a/ax 0 0

e.v 0 %y 0

E}[e] =
ez 0 0 %z

Yxy %y %x 0

Yxz %z 0 a/ax

Yyz 0 %z Nay

(I)

(2)

Y,ll

x,~
Fig. I. Reference coordinates and dimensions of a homogeneous, thick rectangular plate.
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For an isotropic material, the elasticity matrix D is given by:
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v/(1-v) v/(1-v) 0 0 0

1 v/(1-v) 0 0 0

1 0 0 0

E(1-v)
(1- 2v)

0 0 (3)
2(I-v)

,D=
(1 +v)(1- 2v)

(1- 2v)

2(1-v)
0

symmetric
(1- 2v)

2(I-v)

where E is the modulus of elasticity and v is Poisson's ratio.
The kinetic energy for free vibration is given by,

(4)

where Ii, zj and ware the corresponding velocity components in the X-, y- and z-directions,
respectively, and p is the mass density per unit volume.

The boundary conditions for the stress free surfaces at z = - t/2 and t/2 can be
expressed in terms of the spatial displacement components as follows,

<Jz=Ae+2GC;)=o; at z(-t/2;t/2), (5a)

(
OW au)

Lxz = G ox + oz = 0;

(
OW ov)

Lyz = G oy + oz = 0;

where e is the dilatation given by:

at z( - t/2; t/2),

at z( - t/2; t/2),

(5b)

(5c)

_(o.o.o){ }T
e- ox'oy'oz U,v,W ,

and A and G are the Lame constants given by:

A = vE. E
(1 +v)(1-2v)' G = 2(1 +v)·

(6)

(7)

The displacement vectors {u, v, w} T are each expressed in terms of functions in x, y, z
and f:

u = u(x,y,z,f) = U(x,y,z)e iwf
,

v = v(x, y, z, f) = V(x, y, z)e iWf
,

W = w(x, y, z, f) = W(x, y, z)eiWf
,

in which f is time and w denotes the frequency of vibration.

(8a)

(8b)

(8c)
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(9)

2.2. The Ritz energy method
For simplicity and generality, a nondimensional coordinate system is introduced:

x y z
~ = ~ ; Yf = band (= t'

where a and b are the length and width of the rectangular planform (see Fig. 1), and tis
the thickness dimension of the plate. The in-plane and transverse deflection amplitude
functions, U(~, Yf, (), V(~, Yf, () and W(~, Yf, 0 in eqns (8) can be approximated by a set of
separable orthogonal polynomial functions in ~, Yf and (, respectively,

I J K

U(~, Yf, 0 = L: L: L: CUijk<PUi(~)l{Iuj(Yf)Xuk«()'

L M N

V(~, Yf, 0 = L: L: L: C"lmn<Pvl(~)l{Ivm(Yf)xvn<O,

P Q R

W(~, Yf, 0 = L: L: L: Cwpqr<Pwp(~)l{Iwq(Yf)xwr('),

(lOa)

(lOb)

(l0e)

where Cuijk> Cv1mn and Cwpqr are the undetermined coefficients and <P, l{I and X are the
corresponding polynomial functions. The functions are basically sets of orthogonally gen­
erated polynomials to be discussed in due course.

Let the maximum energy functional of the thick rectangular plate be,

IF = IU max - lrrna" (II)

in which IU max> the maximum strain energy, and lrmax> the maximum kinetic energy, occur
respectively at maximum deflection and maximum velocity in a vibratory cycle.

Substituting the spatial displacement functions given in eqn (10) into the energy
functional and minimizing with respect to the unknown coefficients according to the Ritz
procedure:

olFjoCuijk = 0,

olFjoCvlmn = 0,

olF joCwpqr = 0,

leads to the governing eigenvalue equation:

( [

[Kuu] [Kuv] [Kuw]] [(Muu]
[Kvv] [K"w] - 12

symmetric [Kww] symmetric

o ]){ {Cu}} {{O}}o {Cv} = {O} ,
[Mww] {Cw} {O}

(12a)

(12b)

(12c)

(13)

in which [Kij] is the stiffness matrix; (Mij] is the diagonal mass matrix; and {Cu}, {Cv} and
{Cw } are the column vectors of the unknown coefficients which can be expressed in the
following forms:

CUIII C vlll C wlll

C ul12 C vl12 C wl12

C ullK C"IIN C wllR

{Cu} = C ul21 {Cv} = C"121 and {Cw} =
C wl21 (14)

CulJK C"IMN CwlQR

C u211 C,,211 C w211

CulJK CvLMN CWPQR
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The expressions of the various elements in the stiffness matrix [K] and mass matrix
[M] are given by:

[K] (
a)( v E10 F01 GOo 1EoO Flo GOO)

uv = b (I _ 2v) uivl ujvm ukvn + 2 uivl ujvm ukvn ,

( 2)( )a v 00 10 0 I 00 0 I 10
[Kvw] = bc (1-2v) EVlwpFvmwqGvnwr+EvlwpFvmwqGvnwr ,

The product of integrals in eqns (15) is given by :

(15a)

(l5b)

(l5c)

(15d)

(l5e)

(15f)

(15g)

(l5h)

(l5i)

(l6a)

(16b)

(l6c)

where r, s = 0, I and subscripts a, {J represent the corresponding displacement fields in u, v
and w. Solving the characteristic eigenvalue problem defined by eqn (13) yields the fre­
quency parameter, X = roa(pIE) 1/

2
• This parameter can be expressed in the form of

A, = (rob 2/1t2)(ptID) 1/2 by multiplying I with the following factor,

(17)

2.3. Orthogonalfunctions and boundary conditions
The set of polynomial functions representing the spatial displacements of the con­

tinuum is orthogonalized via the Gram-Schmidt process (Chihara, 1978). This is illustrated
for <!>(e) as follows,

(18)
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where

and
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(19a)

(19b)

The polynomial <po(e) is defined as zero. Note that the coefficients, 0 k and 8k for the
subsequent term can be computed from the two previous polynomials.

The set of polynomials generated satisfies the following orthogonality condition:

(20)

where (;ij is the Kronecker delta and the value of nij depends on the normalization used.
The generating function, g(e), is chosen such that the higher terms continue to satisfy the
geometric boundary conditions. Polynomials in the y- and z-directions can also be con­
structed by following a similar procedure.

In this analysis, the boundary conditions are chosen such that xz- and yz-planes are
the symmetry planes. This symmetry consideration permits the classification of the vibration
modes into four distinct symmetry classes. Namely, doubly symmetric (SS) modes,
symmetric-antisymmetric modes (SA), antisymmetric-symmetric modes (AS) and double
antisymmetric modes (AA) about these xz- and yz-planes. The apparent computational
advantage of this classification is that it reduces the determinant size of the resulting
eigenvalue equation to that manageable by smaller computers.

The basic function in the z-direction, X(O, is chosen to be unity [X(O = 1]. It satisfies
the essential geometric requirement of the stress free surfaces at z = - t/2 and t/2. In x- or
y-direction, it depends on the boundary constraints and symmetry classes of vibration, the
basic functions in these directions take on different forms. For a stress free surface on a
straight edge, x = constant, the boundary requirements are;

ax = 0, i xy = 0 and i xz = O. (21)

On the other hand, for a simple support on the same straight edge, the corresponding
boundary conditions are:

w = 0, v = 0 and ax = O.

Finally, for a fully clamped edge, the boundary conditions are:

w = 0, v = 0 and u = o.

(22)

(23)

In the Ritz formulation, it is sufficient to choose admissible functions that satisfy only
the essential geometric boundary conditions. Tables 1(a) and 1(b) summarize the respective
basic functions used in each of the symmetry classes at different boundary conditions.
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Table l(a). Notations for various boundary conditions and the corresponding basic
functions in the x-direction
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Boundary conditions

Free-free (F-F)

Simply-simply supports (S-S)

Clamped-damped (C-C)

4>.,(~) = ~

u"W=~
4>w' (~) = ~

4>.,W=~
4>",(~) = C-0.25~
4>w' (~) = ~3 -0.25~

4>.,W = ~3-0.25~

4>",W = ~3-0.25~
4>wl(~) = ~3-0.25~

Ie(~)

4>.,W = 1.0
4>dW = 1.0
4>w'W = 1.0
4>., (~) = 1.0
4>v'W = ~2-0.25
4>w'W = ~2-0.25

4>.,(~) = e-0.25
4>v'W = e-0.25
4>w' (~) = e -0.25

Table I(b). Basic functions for U, V and W components at different symmetry classes

U V W
Symmetry
class 4>.,(~) ifr., (,,) 4>vlW ifrvl (,,) 4>wl (~) ifrw'(")

SS to J; J; to J; J;
AS J; J; to Iv to Ie
SA to to Ie Ie J; to
AA Ie f" I" Ie to Ie

Generating function g(~; ,,; {) = (e; ,,2; {)

3. VERIFICATION AND NUMERICAL APPLICATIONS

The three-dimensional continuum method described in the previous section has been
applied to compute the nondimensional frequency parameters, A. = (wb 2In2)(pfID) li2 and
vibration mode shapes for the homogeneous, thick, rectangular plates subject to arbitrary
combinations of boundary constraints. The notation for boundary conditions, for instance,
SFCF denotes a rectangular plate with edges x = -aI2, y = -bI2, x = al2 and y = bl2
having the simply supported, free, clamped, and free support conditions, respectively. This
boundary convention is used throughout the present study.

3.1. Convergence and comparison ofeigenvalues
Table 2(a) presents the convergence studies on the eigenvalues A. for simply supported

square plates. The rate of convergence is examined for the plates with thickness ratios,
fib = om, 0.1 and 0.5. The numbers of terms used in the triple infinite series of U, Vand
Ware stepped steadily from 4 x 4 x 3 to higher terms to demonstrate the monotonic
downward convergence behavior of A..

A careful scrutiny of the convergence table reveals that as the thickness ratio increases,
the number of terms needed for the polynomial function in the thickness direction (z­
direction) increases proportionally. For a relatively thin plate (fib = 0.01), 4 terms in the
z-direction are sufficient to give converged results up to five significant figures. However, it
needs as high as seven terms for a plate with thickness ratio tlb = 0.5 to achieve the same
degree of accuracy. On the other hand, the number of terms needed in the shape
functions along the plate surface (x- and y-directions) reduces drastically from 7 x 7 to 4 x 4
terms as the plate thickness dimension becomes significant. Consequently, the overall
determinant size involved in the solution of thicker rectangular plates becomes smaller
(det = 336 for a plate with fib = 0.5 as compared to det = 558 for a plate with fib = 0.01).
To investigate the convergence behaviors with respect to the boundary conditions, frequency
parameters for a moderately thick square plate are computed (tlb = 0.1). The rate of
convergence for each boundary condition is presented in Table 2(b). The convergence
patterns are found to be invariant with respect to the boundary constraints.

From the preceding convergence studies, it was established that for very thin plates
(fib = 0.01), 9 x 9 x 4 terms were needed to achieve a reasonable convergence. For plates
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Table 2(b). Convergence offrequency parameters, A = (wb 2/7t2)(ptID) 1{2, for a thick square plate with different boundary conditions (tlb = 0.1)

Symmetry classes and mode number
Boundary Terms in Det
conditions x,y,z size S5-1 SS-2 SS-3 SA-I SA-2 SA-3 AS-I AS-2 AS-3 AA-I AA-2 AA-3

SFSF 4x4x3 144 0.9591 3.4635 7.8939 3.7158 6.3960 13.047 1.5678 4.9400 6.7932 4.3814 6.5234 9.5634
5x5x4 300 0.9571 3.4370 7.8007 3.6922 6.3185 12.869 1.5605 4.9400 6.7297 4.3459 6.5234 9.4286
6x6x4 432 0.9571 3.4362 7.8001 3.6920 6.3168 12.854 1.5604 4.9400 6.7293 4.3456 6.5234 9.4275
5x5x5 375 0.9571 3.4361 7.8000 3.6920 6.3165 12.854 1.5603 4.9400 6.7293 4.3455 6.5234 9.4274
5x5x6 450 0.9571 3.4361 7.7991 3.6919 6.3162 12.850 1.5603 4.9400 6.7287 4.3454 6.5234 9.4259
5x5x7 525 0.9571 3.4361 7.7990 3.6919 6.3161 12.849 1.5603 4.9400 6.7287 4.3454 6.5234 9.4257
5x5x8 600 0.9571 3.4361 7.7990 3.6919 6.3161 12.849 1.5603 4.9400 6.7287 4.4354 6.5234 9.4257 ;!5x5x9 675 0.9571 3.4361 7.7990 3.6919 6.3161 12.849 1.5603 4.9400 6.7287 4.3454 6.5234 9.4257 ...

CFCF 4x4x3 144 2.1305 3.9777 9.9613 5.4816 7.5064 10.648 2.4821 5.9547 7.0530 5.9349 10.266 10.965 ~
5x5x4 300 2.1076 3.9268 9.7418 5.3930 7.3674 10.640 2.4516 5.9515 6.9708 5.8346 10.080 10.962 ~.
6x6x4 432 2.1058 3.9246 9.7362 5.3894 7.3625 10.637 2.4498 5.9502 6.9695 5.8309 10.076 10.962 ::l
5x5x5 375 2.1051 3.9240 9.7343 5.3880 7.3611 10.635 2.4491 5.9496 6.9692 5.8294 10.075 10.962 f!l.

0
5x5x6 450 2.1054 3.9240 9.7309 5.3868 7.3593 10.636 2.4493 5.9500 6.9684 5.8282 10.072 10.962 ::l

5x5x7 525 2.1051 3.9234 9.7278 5.3860 7.3582 10.636 2.4489 5.9500 6.9678 5.8273 10.071 10.962
e:.
:S.

5x5x8 600 2.1050 3.9234 9.7278 5.3859 7.3582 10.636 2.4489 5.9500 6.9678 5.8273 10.071 10.961 r:r
5x5x9 675 2.1050 3.9234 9.7276 5.3859 7.3581 10.636 2.4489 5.9500 6.9678 5.8272 10.070 10.961 ;;l

g.
SCSC 4x4x3 144 2.7490 8.9733 10.624 5.0539 6.5234 12.455 6.1549 11.521 11.658 8.1862 13.047 15.492 ::l

5x5x4 300 2.7212 8.8556 10.399 5.0031 6.5234 12.195 6.0590 11.459 11.518 8.0582 13.047 15.490
..,
::l

6x6x4 432 2.7198 8.8551 10.395 5.0022 6.5234 12.191 6.0561 11.458 11.517 8.0558 13.047 15.490
..,
-<

5x5x5 375 2.7192 8.8549 10.393 5.0019 6.5234 12.190 6.0549 11.457 11.517 8.0549 13.047 15.490 fA
r;;'

5x5x6 450 2.7193 8.8532 10.389 5.0015 6.5234 12.184 6.0532 11.452 11.517 8.0524 13.047 15.490
5x5x7 525 2.7189 8.8528 10.386 5.0011 6.5234 12.181 6.0523 11.451 11.517 8.0514 13.047 15.490
5x5x8 600 2.7189 8.8528 10.386 5.0011 6.5234 12.181 6.0523 11.451 11.517 8.0513 13.047 15.490
5x5x9 675 2.7188 8.8528 10.386 5.0011 6.5234 12.181 6.0522 11.451 11.517 8.0513 13.047 15.490

ccce 4x4x3 144 3.3675 10.746 10.847 6.4608 12.531 13.018 6.4608 12.531 13.018 9.0870 14.871 17.762
5x5x4 300 3.3254 10.513 10.613 6.3536 12.525 12.724 6.3536 12.525 12.724 8.9147 14.871 17.305
6x6x4 432 3.3231 10.508 10.608 6.3501 12.523 12.719 6.3501 12.523 12.719 8.9104 14.870 17.299
5x5x5 375 3.3222 10.507 10.606 6.3487 12.522 12.718 6.3487 12.522 12.718 8.9089 14.870 17.297
5x5x6 450 3.3223 10.502 10.603 6.3470 12.522 12.710 6.3470 12.522 12.710 8.9049 14.870 17.280
5x5x7 525 3.3216 10.499 10.598 6.3458 12.522 12.706 6.3458 12.522 12.706 8.9031 14.870 17.275
5x5x8 600 3.3216 10.499 10.598 6.3457 12.522 12.706 6.3457 12.522 12.706 8.9031 14.870 17.275
5x5x9 675 3.3215 10.499 10.598 6.3457 12.522 12.706 6.3457 12.522 12.706 8.9030 14.870 17.275 ...,...,

0-

'"
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with other thickness ratios, it has been found that similar convergence could be attained
with polynomials of 6 x 6 x 8 terms. These established polynomial sets are used throughout
the present computations.

To validate the accuracy of the present method, comparison studies have been carried
out for cases where the solutions for exact three-dimensional analysis and simple plate
theories, notably the classical plate theory (CPT) and the shear deformable plate theory
(SDPT) are available. For this purpose, thick rectangular plates with simply supported
(SSSS) and cantilevered (CFFF) boundaries have been considered. Table 3(a) lists the
computed frequency parameters for the simply supported plate together with the known
solutions of approximate theories and existing exact three-dimensional analysis. The fre­
quency data for the classical plate theory are obtained from the work of Leissa (1973) and
the Mindlin theory's results are quoted from the work of Dawe et af. (1985) that used a
shear correction factor K = n 2f12. The three-dimensional results are extracted from the
excellent work ofSrinivas et al. (1970) who pioneered in the exact three-dimensional analysis
of simply supported thick plates. From Table 3(a), it is observed that at thickness ratio
tlb = 0.01, the frequency parameters obtained from the approximate theories and the
present three-dimensional analysis are in close agreement. At a higher thickness ratio,
tlb = 0.1, the classical plate theory, however, tends to give much higher eigenvalues than
those of the Mindlin theory and the present three-dimensional analysis. This is attributed
to the assumption made in the classical plate theory that a line normal to the plate middle
surface remains normal during the deformation. This assumption neglects the effects of
through thickness shear deformation and rotary inertia which results in over-estimating
the plate stiffness. On the other hand, in the Mindlin plate theory, the shear deformation
effects are ingeniously accounted for in the formulation. A shear correction factor, however,
is introduced to achieve a more accurate shear strain distribution through the plate thick­
ness. While in the present three-dimensional analysis and the exact three-dimensional
analysis of Srinivas et al. (1970), this effect has been implicitly incorporated in the elasticity
formulation. This has resulted in excellent agreement between the results by the present
method with those of Srinivas et al. (1970).

For the cantilevered thick rectangular plate, the frequency parameters are compared
with those presented by Leissa and Zhang (1983). In this study, the symmetry classification
adopted by Leissa and Zhang (1983) has been followed. The first five frequency parameters
given in Table 3(b) for each symmetry class are compared with those values of Leissa and
Zhang (1983). It can be seen that excellent agreement has also been obtained between both
methods.

3.2. Results and discussion
Having established the rate of convergence and degrees of accuracy of the present

formulation, the three-dimensional continuum method is applied to compute the non­
dimensional frequency parameters, A = (wb 2In 2)(ptID) 112, for rectangular plates with vari­
ous geometric configurations and boundary conditions: SSSS, SFSF, CFCF, SCSC and
CCCC. Numerical results are presented in Tables 4(a)-(e) for plates with aspect ratios
ranging from 0.5-2.0; and side-to-thickness ratios covering the range of 0.01-0.5. The
influences ofplate aspect ratio and thickness ratio on the vibration frequencies are examined.
The first three nondimensional frequency parameters, A, corresponding to each distinct
symmetry class were calculated. For all these cases where Poisson's ratio is needed, it is
taken to be v = 0.3.

From these tabulated results, it is observed that for plates with prescribed boundary
condition and aspect ratio, the nondimensional frequency parameter, A, decreases as the
side-to-thickness ratio, tlb, increases. Conversely, for plates with constant thickness, the
frequency parameter decreases for plates with higher aspect ratio, alb. Comparing the
frequency parameters, A, for plates with different boundary conditions, it is evident that
plates with more constraints imposed on the boundaries have a higher value of A. For
example, the frequency parameters of the SFSF plate are generally many times higher than
the corresponding modes of the CCCC plate with the same geometrical specifications.



Table 3(a). Comparison of frequency parameters, A= (wb 2/n 2)(pt/D) 1/2, for a thick square plate with SSSS boundaries
~
~

~ t/b

0.01

0.1

Method of solution

Classical theoryt
SDPT Ritz methodt
Present three-dimensional analysis
Classical theoryt
SDPT Ritz methodt
Three-dimensional exact analytical solution§
Present three-dimensional analysis

1 (SS-I)

2.000
1.999
1.9993
2.000
1.931
1.9342
1.9342

Mode sequence number

2 (SA-I) 3 (AS-I) 4 (AA-I) 5 (SS-2)

5.000 5.000 8.000 10.000
4.995 4.995 7.988 9.981
4.9956 4.9956 7.9888 9.9826
5.000 5.000 8.000 10.000
4.605 4.605 7.064 8.605
4.6222 4.6222 7.1030 8.6618
4.6222 4.6222 7.1030 8.6617

6 (SS-3)

10.000
9.981
9.9826

10.000
8.605
8.6618
8.6617

tLeissa (1973).
tDawe et al. (1985) with a shear correction factor K = n2/12.
§Srinivas et at. (1970).

Table 3(b). Comparison of frequency parameters, f. = (wb' 2/n 2)(pt'jD) 1/2, for a cantilevered thick square plate
with t'/b' 0.5

Mode sequence number
Synunetry
classes Source of data I 2 3 4 5

SS Leissa and Zhangt 1.0689 1.8733 2.1424 2.9200 3.1784
Present three-dimensional analysist 1.0687 1.8722 2.1394 2.8193 3.1260

SA Leissa and Zhang 0.2996 1.1l44 1.5253 2.2726 2.5327
Present three-dimensional analysis 0.2976 1.I087 1.5222 2.2536 2.3608

AS Leissa and Zhang 0.4469 1.1882 2.0545 2.8513 3.1962
Present three-dimensional analysis 0.4449 1.1863 2.0369 2.7005 3.1616

AA Leissa and Zhang 0.5279 1.4863 2.3028 2.5429 2.9916
Present three-dimensional analysis 0.5263 1.4795 2.2772 2.4919 2.8482

tThe values presented in this case are converted from the frequency results for a parallelepiped of con­
figuration C in the paper by Leissa and Zhang (1983).

tFor this case, the following transformation has been done: a' = t, b' = band t' = a. This is to enable the
comparison between the present three-dimensional analysis results and that of the reference for each synunetry
class.
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Table 4(a). Frequency parameters, .l. = (rob 2In 2 )(ptID) 1/2, for a thick plate with SSSS boundary condition

Symmetry classes and mode number
Aspect Thickness

ratio, alb ratio, lib SS-I SS-2 SS-3 SA-I SA-2 SA-3 AS-I AS-2 AS-3 AA-I AA-2 AA-3

0.5 0.01 4.9956 12.971 28.854 16.950 24.892 40.710 7.9888 19.930 39.724 19.930 31.823 51.535
0.1 4.6222 10.879 14.587 6.5234 13.644 18.658 7.1030 13.047 15.597 13.047 15.596 22.610
0.2 3.8991 7.2934 8.0926 3.2617 9.7636 9.7851 5.6524 6.5234 9.2255 6.5234 10.901 13.047
0.3 3.2406 4.8623 6.2099 2.1745 6.5234 7.3431 4.3489 4.5123 6.1503 4.3489 8.1058 8.4528
OA 2.7254 3.6467 4.9705 1.6309 4.3912 4.8926 3.2617 3.6972 4.6127 3.2617 5.2213 6.3771
0.5 2.3312 2.9174 3.8874 1.3047 2.9174 3.9140 2.6094 3.1080 3.6902 2.6094 3.6902 5.2187

1.0 0.01 1.9993 9.9826 9.9826 4.9956 12.971 16.950 4.9956 12.971 16.950 7.9888 19.930 19.930 ~
0.1 1.9342 8.6617 8.6617 4.6222 6.5234 10.879 4.6222 6.5324 10.879 7.1030 13.047 13.047

~
0.2 1.7758 4.6127 6.6868 3.2617 3.8991 7.2934 3.2617 3.8991 7.2934 5.6524 6.5234 6.5234
0.3 1.5895 3.0752 5.1152 2.1745 3.2406 4.8623 2.1745 3.2406 4.8623 4.3489 4.3489 4.5123 t""

;;;
0.4 1.4131 2.3064 3.7727 1.6309 2.7254 3.6467 1.6309 2.7254 3.6467 3.2617 3.2617 3.6972 ~

0.5 1.2590 1.8451 2.9325 1.3047 2.3312 2.9174 1.3047 2.3312 2.9174 2.6094 2.6094 3.1080 ~

1.5 0.01 1.4441 4.9956 9.4289 2.7764 8.0996 10.758 4.4410 7.9888 15.071 5.7719 11.090 17.723 !'L
0.1 1.4096 4.6222 7.8402 2.6538 6.5234 7.1916 4.1415 4.3489 7.1030 5.2834 8.6979 9.4988
0.2 1.3209 3.8991 3.9201 2.3747 3.2617 5.4362 2.1745 3.5398 5.6524 4.3489 4.3818 6.5234
0.3 1.2088 2.6134 3.2406 2.0731 2.1745 3.6241 1.4496 2.9719 4.3489 2.8993 3.5967 4.3489
0.4 1.0954 1.9600 2.7254 1.6309 1.8064 2.7181 1.0872 2.5168 3.2617 2.1745 2.9998 3.2617
0.5 0.9912 1.5680 2.3312 1.3047 1.5848 2.1745 0.8698 2.1631 2.6094 1.7396 2.5514 2.6094

2.0 0.01 1.2497 3.2482 7.2408 1.9993 4.9956 9.9826 4.2468 6.2432 10.232 4.9956 7.9888 12.971
0.1 1.2237 3.0825 6.5003 1.9342 4.6222 6.5234 3.2617 3.9715 5.6785 4.6222 6.5234 7.1031
0.2 1.1555 2.7197 3.6467 1.7758 3.2617 3.8991 1.6309 3.4110 4.6644 3.2617 3.8991 5.6524
0.3 1.0669 2.3443 2.4311 1.5895 2.1745 3.0752 1.0872 2.8747 3.2617 2.1745 3.2406 4.3489
0.4 0.9748 1.8233 2.0231 1.4131 1.6309 2.3064 0.8154 2.4409 2.4463 1.6309 2.7254 3.2617
0.5 0.8881 IA587 1.7624 1.2590 1.3047 1.8451 0.6523 1.9570 2.1018 1.3047 2.3312 2.6094



Table 4(b). Frequency parameters, A = (wb'ln')(pIID) 1/2, for a thick plate with SFSF boundary condition

Symmetry classes and mode number
Aspect Thickness

ratio, alb ratio, lib SS-I SS-2 SS-3 SA-I SA-2 SA-3 AS-l AS-2 AS-3 AA-l AA-2 AA-3

0.5 0.01 3.9422 7.1459 17.096 15.834 19.355 29.991 4.7268 11.203 24.924 16.636 23.801 37.958
0.1 3.6919 6.3161 13.099 12.849 13.047 15.098 4.3454 9.4257 11.401 6.5234 13.346 17.804
0.2 3.1888 5.0595 6.5457 6.5234 9.2728 10.564 3.6651 5.6981 7.1055 3.2617 9.5497 9.7851
0.3 2.7010 4.0572 4.3598 4.3489 7.0017 7.2482 3.0500 3.7967 5.4430 2.1745 6.5234 7.1780 --1
0.4 2.3019 3.2654 3.3227 3.2617 4.0771 5.2213 2.5665 2.8457 4.2216 1.6309 4.3912 4.8926 ::r...

'"0.5 1.9872 2.6071 2.7760 2.6094 2.6094 3.6902 2.1938 2.2750 3.2537 1.3047 2.9174 3.9140 '"6-
1.0 0.01 0.9755 3.7118 8.8985 3.9422 7.1459 15.834 1.6316 7.6074 9.7065 4.7268 11.203 16.636 S·

0.1 0.9571 3.4361 7.7990 3.6919 6.3161 12.849 1.5603 4.9400 6.7287 4.3454 6.5234 9.4257 '"t:l
0.2 0.9120 2.9650 4.6127 3.1888 5.0595 6.5234 1.4309 2.4697 5.3611 3.2617 3.6651 5.6981 en

o'
0.3 0.8523 2.5168 3.0752 2.7010 4.0572 4.3489 1.2855 1.6462 4.0872 2.1745 3.0500 3.7967 t:l

l::-
0.4 0.7883 2.1469 2.3064 2.3019 3.2617 3.2654 1.1466 1.2344 3.0607 1.6309 2.5665 2.8457

~.

0.5 0.7261 1.8451 1.8502 1.9872 2.6071 2.6094 0.9874 1.0223 2.4421 1.3047 2.1938 2.2750 r:T...
1.5 0.01 0.4303 2.9572 3.9422 1.7427 4.6687 7.0259 0.9714 4.7268 6.8664 2.4653 7.8310 8.5919 ~.

0
0.1 0.4263 2.7835 3.6919 1.6882 4.2569 6.3055 0.9347 2.8075 4.3454 2.3345 6.5234 6.9192 t:l

0.2 0.4165 2.4639 3.1888 1.5605 3.5823 5.0932 0.8744 1.4037 3.6651 2.0877 3.2617 3.5539 I"
t:l

0.3 0.4024 2.1386 2.2717 1.4082 2.9784 3.4727 0.8041 0.9357 3.0500 1.8272 2.1745 2.3686 l::-
'<

0.4 0.3854 1.7026 1.8575 1.2611 2.5007 2.6029 0.7018 0.7322 2.4346 1.5955 1.6309 1.7759 en
(;;.

0.5 0.3671 1.3608 1.6253 1.1303 2.0804 2.1280 0.5614 0.6634 1.9453 1.3047 1.4001 1.4203

2.0 0.01 0.2409 2.2096 2.6683 0.9755 3.7118 3.9422 0.6955 2.9542 6.5973 1.6316 4.7268 7.6074
0.1 0.2396 2.1245 2.5338 0.9571 3.4361 3.6919 0.6704 1.8041 2.7800 1.5603 4.3454 4.9400
0.2 0.2363 1.9318 2.2705 0.9120 2.9650 3.1889 0.6319 0.9021 2.4516 1.4309 2.4697 3.2617
0.3 0.2315 1.7138 1.7309 0.8523 2.5168 2.7011 0.5866 0.6014 2.1178 1.2855 1.6462 2.1745
0.4 0.2255 1.2975 1.5130 0.7883 2.1469 2.3019 0.4510 0.5389 1.8307 1.1466 1.2344 1.6309
0.5 0.2185 1.0372 1.3409 0.7261 1.8451 1.8502 0.3608 0.4918 1.5947 0.9874 1.0223 1.3047
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Table 4(d). Frequency parameters, A. = (wb 2In 2 )(ptID) 1/2, for a thick plate with sese boundary condition

Symmetry classes and mode number
Aspect Thickness

ratio, alb ratio, tlb SS-I SS-2 SS-3 SA-I SA-2 SA-3 AS-I AS-2 AS-3 AA-I AA-2 AA-3

0.5 0.01 5.5434 15.650 33.653 17.208 26.748 44.641 9.5727 23.681 40.350 20.868 34.698 56.511
0.1 5.0011 12.181 19.749 6.5234 13.749 19.242 8.0513 15.490 17.020 13.047 15.940 23.357
0.2 4.0824 8.4898 9.8690 3.2617 9.7851 9.7942 6.0268 7.7475 11.230 6.5234 10.993 13.047
0.3 3.3294 6.3451 6.5625 2.1745 6.5234 7.3552 4.6670 5.1663 7.9246 4.3489 8.1406 8.4528

...,
::r

0.4 2.7722 4.8824 5.0262 1.6309 4.3912 4.8926 3.7700 3.8753 5.6207 3.2617 5.2213 6.3963
...,
"

0.5 2.3586 3.7834 4.1444 1.3047 3.9140 3.1006 4.0526 2.6094 3.6902 5.2187 "2.9174 3.1478 6-
1.0 0.01 2.9351 10.339 13.064 5.5434 15.650 17.208 7.0228 14.174 21.052 9.5727 20.868 23.681 3'

"0.1 2.7188 8.8528 10.386 5.0011 6.5234 12.181 6.0522 11.451 11.517 8.0513 13.047 15.490 fi1
0.2 2.2920 6.1314 6.7564 3.2617 4.0824 8.4898 4.5949 5.7649 8.2744 6.0268 6.5234 7.7475 o'

::l
0.3 1.9061 4.0798 5.2688 2.1745 3.3294 6.3451 3.5633 3.8466 5.7845 4.3489 4.6670 5.1663 ~

0.4 1.6085 3.0494 4.2600 1.6309 2.7722 4.3912 2.8783 2.8868 4.3110 3.2617 3.7700 3.8753 -<
CT

0.5 1.3836 2.4259 3.5114 1.3047 2.3586 2.9174 2.3106 2.4048 3.4078 2.6094 3.1006 3.1478 ...,
:::;.

1.5 0.01 2.5399 5.5434 12.403 3.5574 8.5053 13.720 6.5866 9.5727 16.174 7.6568 12.406 20.868 o'
0.1 2.3661 5.0011 9.5615 3.2742 6.5234 7.4293 5.7058 8.0513 10.964 6.5548 10.178 12.531 ::l

~

0.2 2.0040 4.0824 4.7802 2.7447 3.2617 5.8069 4.3400 5.4909 6.0268 4.9626 6.2705 6.5234 ::l

0.3 1.6635 3.1849 3.3294 2.1745 2.2813 4.5959 3.3557 3.6651 4.6670 3.8557 4.1827 4.3489 ~
'"0.4 1.3966 2.3860 2.7722 1.6309 1.9269 3.7311 2.7003 2.7512 3.7700 3.1216 3.1383 3.2617 Cj;'

0.5 1.1945 1.9054 2.3586 1.3047 1.6583 2.9174 2.2023 2.2488 3.0509 2.5114 2.6094 2.6123

2.0 0.01 2.4157 3.9605 7.6757 2.9351 5.5434 10.339 6.4378 8.0526 11.610 7.0228 9.5727 14.174
0.1 2.2562 3.6311 6.7664 2.7188 5.0011 6.5234 5.5877 6.8672 9.5920 6.0522 9.0513 11.504
0.2 1.9163 3.0302 4.1889 2.2920 3.2617 4.0824 4.2531 5.1889 5.4515 4.5949 5.7649 6.0268
0.3 1.5907 2.5120 2.7920 1.9061 2.1745 3.3294 3.2841 3.6395 4.0321 3.5633 3.8466 4.3489
0.4 1.3329 2.0930 2.1175 1.6085 1.6309 2.7723 2.6375 2.7322 3.2654 2.8783 2.8868 3.2617
0.5 1.1369 1.6731 1.8190 1.3047 1.3836 2.3586 2.1871 2.1926 2.6394 2.3106 2.4048 2.6094
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Three-dimensional vibration analysis 3373

A set of vibration mode shapes for thick square plates with thickness ratio, fIb = 0.2,
are presented in Figs 2-6. These correspond respectively to SSSS, SFSF, CFCF, SCSC
and CCCC boundary conditions. The normalized transverse deflection (W-mode shape)
and in-plane deflections (U- and V-mode shapes) are presented in shaded contour plots.
The shaded portions in these figures represent regions with negative deflection amplitude
while the unshaded portions represent regions with positive deflection amplitude. The
lines of demarcation form the nodal lines for that particular mode.

By dividing the plates into regular meshes and assigning the vectorial displacement
components U, V and W to each mesh coordinate, sets of three-dimensional deformed
mode shapes are obtained. These diagrams express vividly the vibratory motion of the
elastic plate at each mode of vibration. For all the boundary constraints examined in this
study, it is observed that in general, the first doubly symmetric mode is predominantly
an out-of-plane flexural motion in the z-direction. In addition, the through thickness
deformations can also be seen for plates with edges that are free or simply supported. These
through thickness deformations take on the form of either thickness-twisting or thickness­
shearing motions, depending on the shapes of the deformed geometries. Figures 2(a) and
2(b) depict the deformed modes of a simply supported plate. It is observed that the
symmetric flexural motions occur at the first and third SS modes. The second SS mode is
predominantly an in-plane stretching and contracting motion in the x- and y-directions.
Other flexural modes can be identified in the second SA mode (also in the second AS mode
because of symmetry) and the first AA mode, respectively.

It is interesting to examine the vibratory motion of plates with free edges. Figures 3
and 4 depict the vibratory motion of plates corresponding to SFSF and CFCF boundary
conditions. Comparing the first three SS modes of vibration for both cases, it is observed
that the deformations exhibit similar characteristics. For both boundary conditions, the
fundamental SS mode is an out-of-plane deflection in the z-direction forming an arc shaped
deformed geometry. The prominent in-plane motion is found in the third SS mode. A more
complex coupling of both in-plane and out-of-plane deflections are manifested in the higher
SA, AS and AA modes of vibration.

Vibration mode shapes for plates with lesser degrees of freedom are shown in Figs 5
and 6, respectively, with SCSC and CCCC boundary conditions. Modes with distinct
thickness deformation in the x-direction (u-mode) can be observed for the plate with SCSC
boundaries. For the fully clamped plate, however, the through thickness motions are
completely restrained at the boundaries. The in-plane motions in the x-direction (u-mode
of vibration) dominate at the second SS and AA modes as well as in the first SA mode of
vibration for the plate with SCSC boundary condition. The vibratory motions for the fully
clamped plate, however, are mainly out-of-plane motion in the z-direction with certain
degrees of in-plane sketching within the plate domain.

4. CONCLUSIONS

A comprehensive study on the vibration analysis of thick rectangular plates based on
the linear, three-dimensional elasticity theory has been presented. The analysis is performed
using the polynomial-based Ritz energy approach. Sets of orthogonally generated poly­
nomial functions were used to describe the spatial displacement components in U, V and
W. For this study, no simplifying assumption has been made on the displacement fields and
on the strain distribution across the thickness, thus the method is capable of providing
accurate frequency solutions to the natural vibration of moderately thick to very thick
plates.

Convergence tests and comparison studies have been carried out to establish the rate
of convergence and validate the degrees of accuracy of the present three-dimensional
formulation. These studies demonstrate the computational efficiency and accuracy of the
method in analysing the free vibration of thick rectangular plates. Extensive numerical
results for homogeneous, thick plates with different combinations of boundary conditions,
aspect ratios and thickness ratios have been presented. It is deduced that the frequency
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Fig. 2. Displacement contour plots and three-dimensional deformed geometry for the SSSS thick
square plate with lib = 0.2: (a) SS and SA modes; (b) AS and AA modes.
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Fig. 3. Displacement contour plots and three-dimensional deformed geometry for the SFSF thick
square plate with lib = 0.2: (a) SS and SA modes; (b) AS and AA modes.
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Fig. 4. Displacement contour plots and three-dimensional deformed geometry for the CFCF thick
square plate with lib = 0.2: (a) SS and SA modes; (b) AS and AA modes.
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Fig. 5. Displacement contour plots and three-dimensional deformed geometry for the sese thick
square plate with tlb = 0.2: (a) SS and SA modes; (b) AS and AA modes.
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Fig. 6. Displacement contour plots and three-dimensional deformed geometry for the ecce thick
square plate with fib = 0.2: (a) SS and SA modes; (b) AS and AA modes.
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parameters increase for plates with lower aspect ratio and smaller thickness ratio. The
presence of more boundary constraints has increased the flexural stiffness, thus increasing
the vibration frequencies.

Vivid representation of the vibration mode shapes are manifested in shaded contour
plots and three-dimensional deformed mesh geometry. Through these deformed mode
shapes, we have achieved a better understanding of the dynamic characteristics of these
thick rectangular plates. These modes encompass the flexural, thickness twist and thickness
shear motions which could also be identified in the approximate theories. In addition, the
present three-dimensional elasticity formulation is capable of predicting those modes of
vibration in which the approximation plate theories are found inadequate to predict. This
concluding remark, in effect, agrees with the observation reported in the pioneering work
of Srinivas et al. (1970).
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